
7136–7145 Nucleic Acids Research, 2008, Vol. 36, No. 22 Published online 7 November 2008
doi:10.1093/nar/gkn880

Efficient processing of TFO-directed psoralen DNA
interstrand crosslinks by the UvrABC nuclease
Laura A. Christensen1, Hong Wang2, Bennett Van Houten2 and Karen M. Vasquez1,*

1Department of Carcinogenesis, Science Park–Research Division, University of Texas M.D. Anderson Cancer
Center, Smithville, TX and 2Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences,
Research Triangle Park, NC, USA

Received September 25, 2008; Accepted October 18, 2008

ABSTRACT

Photoreactive psoralens can form interstrand cross-
links (ICLs) in double-stranded DNA. In eubacteria,
the endonuclease UvrABC plays a key role in pro-
cessing psoralen ICLs. Psoralen-modified triplex-
forming oligonucleotides (TFOs) can be used to
direct ICLs to specific genomic sites. Previous stud-
ies of pyrimidine-rich methoxypsoralen–modified
TFOs indicated that the TFO inhibits cleavage by
UvrABC. Because different chemistries may alter
the processing of TFO-directed ICLs, we investi-
gated the effect of another type of triplex formed
by purine-rich TFOs on the processing of 4’-(hydro-
xymethyl)-4,5’,8-trimethylpsoralen (HMT) ICLs by
the UvrABC nuclease. Using an HMT-modified TFO
to direct ICLs to a specific site, we found that
UvrABC made incisions on the purine-rich strand
of the duplex ~3 bases from the 3’-side and ~9
bases from the 5’-side of the ICL, within the TFO-
binding region. In contrast to previous reports, the
UvrABC nuclease cleaved the TFO-directed psora-
len ICL with a greater efficiency than that of the
psoralen ICL alone. Furthermore, the TFO was dis-
sociated from its duplex binding site by UvrA and
UvrB. As mutagenesis by TFO-directed ICLs
requires nucleotide excision repair, the efficient pro-
cessing of these lesions supports the use of triplex
technology to direct DNA damage for genome
modification.

INTRODUCTION

Psoralens are photoreactive compounds that have been
used extensively in the treatment of skin disorders, such
as psoriasis (1). These planar, heterocyclic molecules can
intercalate into double-stranded DNA, and with absorp-
tion of photons at 365 nm, can form adducts with pyrimi-
dine bases. Psoralen molecules contain two photoreactive

double bonds, a 3–4 double bond on the pyrone side and a
40–50 bond on the furan side that can form DNA inter-
strand crosslinks (ICLs) preferentially at 50-TpA-30 sites in
double-stranded DNA (2–4).

In bacteria, the three-component endonuclease,
UvrABC, plays an important role in the processing and
removal of ICLs. UvrABC has been shown to hydrolyze
the 9th phosphodiester bond to the 50-side and the 3rd
phosphodiester bond to the 30-side of a psoralen ICL
(5,6). In this process, dimerized UvrA binds UvrB in a
search for damage-induced conformational changes in
the double helix. After DNA damage and/or helical dis-
tortions are identified, UvrA is released from the DNA
and UvrC is recruited to the UvrB-DNA preincision com-
plex. UvrC then cleaves on the 30-side of the damaged site,
followed by a second cleavage on the 50-side [reviewed in
(7,8)].

Triplex-forming oligonucleotides (TFOs) are single-
stranded oligonucleotides that can bind specific purine-
rich stretches of DNA via Hoogsteen hydrogen bonding
through the major groove of the duplex DNA, thereby
forming a triplex DNA structure (9,10). Psoralen-modified
TFOs can be used to create ICLs at unique sites after
irradiation with UVA light making this a useful tool for
directing site-specific DNA damage both in vitro and
in vivo [reviewed in (11)]. It has been shown that 40-(hydro-
xymethyl)-4,50,8-trimethylpsoralen (HMT) forms primar-
ily 40–50-furan-sided monoadducts on the purine-rich
strand of the target duplex substrate when targeted with
a purine-rich TFO. These monoadducts are readily con-
verted to ICLs with thymidine on the complementary
pyrimidine-rich strand (12). In contrast, monoadducts
generated on thymidine in the pyrimidine strand are
mainly 3,4-pyrone-sided monoadducts which undergo
minimal conversion to ICLs (12). In the absence of triplex
formation (i.e. with an HMT ICL only) UvrABC prefer-
entially incises the furan-side-adducted strand of an HMT
ICL at a 50-TpA-30 site (6).

Previous studies of pyrimidine-rich methoxypsoralen
(MOP)-modified TFOs have indicated that the presence
of the third strand inhibits cleavage by the UvrABC
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nulcease by as much as 80% compared to the ICL alone
(13), presumably due to the third strand blocking the
nuclease incision site in the underlying duplex substrate.
However, since different binding and crosslinking chemis-
tries may alter the processing of TFO-directed ICLs, here
we investigated the effect of purine-rich TFOs on the pro-
cessing of HMT ICLs by purified UvrA, UvrB and UvrC
subunits. Whereas pyrimidine-rich TFOs used previously
bind to the purine-rich strand of the target duplex in the
same 50–30 orientation as the purine-rich strand and
require acidic conditions for binding, purine-rich TFOs
bind in the major groove at physiological pH in an anti-
parallel orientation such that the third strand TFO has the
opposite 50–30 orientation as the purine-rich duplex strand.

Our studies demonstrate efficient cleavage within the
TFO binding site of the TFO-directed psoralen ICL by
UvrABC compared to the ICL alone, in contrast to pub-
lished work utilizing a pyrimidine-rich MOP-modified
TFO (13). Furthermore, we show that binding of UvrA
and UvrB to the TFO-directed ICL results in dissociation
of the TFO from its duplex binding site. Our results sug-
gest that the TFO does not hinder cleavage by the
UvrABC complex, and therefore supports the use of tri-
plex technology as a powerful means to induce site-specific
DNA damage to facilitate genome modification.

MATERIALS AND METHODS

Oligonucleotides

The psoralen-modified oligonucleotide (psoAG30) and
psoralen-modified disulfide linked oligonucleotide (pso-
SS-AG30) were synthesized and HPLC purified by
Midland Certified Reagent Co. (Midland, TX, USA). The
50-psoralen-modified oligonucleotides were synthesized
with the derivative 2-[40-(hydroxymethyl)-4,50,8-tri-
methylpsoralen]-hexyl-1-O-(2-cyanoethyl)-(N,N-diisopro-
pyl)-phosphoramidite. The disulfide-linked oligonucleotide
was designed with a disulfide bridge between the psoralen
moiety and the oligonucleotide. Primers for PCR prepara-
tions of duplex substrate were synthesized by Integrated
DNA Technologies (Coralville, IA, USA). Primers were
designed to amplify a 120-bp region of the pSupFG1
plasmid encompassing the supF TFO target site, which
has been shown to be bound by nucleotide excision
repair (NER) factors in the presence of a TFO-directed
HMT ICL (14).

Substrate preparation

Target duplex DNA was synthesized by PCR amplifica-
tion of a 120-bp region of the pSupFG1 plasmid contain-
ing the supF TFO target site (14). To create target duplex
that was 50-radiolabeled on either the purine-rich strand or
the pyrimidine-rich strand, the appropriate PCR primer
was 50-end-labeled using [g-32P]ATP and T4 polynucleo-
tide kinase prior to the PCR reaction. The 120-bp PCR
product was gel purified on a 15% native polyacrylamide
gel. The 50-end-labeled substrate was incubated 12–16 h in
triplex binding buffer (10mMMgCl2, 10mM Tris, pH 7.6)
with a 50- to 100-fold excess of psoAG30 or pso-SS-
AG30. Samples were irradiated with 1.8 J/cm2 of 365 nm

UVA light to crosslink the psoralen-modified TFO to the
duplex substrate. Substrates crosslinked to pso-SS-AG30
were incubated with 100mM DTT at 658C for 3 h to
reduce the disulfide bond and remove the TFO.
Substrates containing the crosslink only (ICL) or the
crosslink with the TFO covalently attached (TFO-ICL)
were purified from denaturing 6% polyacrylamide gels,
electroeluted and purified over MicroSpin G-25 columns
(GE Healthcare, Buckinghamshire, UK). To reanneal
crosslinked substrates, samples were heated to 958C for
5min and allowed to cool to room temperature (�5 h) in
10mM Tris, pH 7.8, 20mM NaCl. Substrates were repuri-
fied over MicroSpin G-25 columns and reincubated in
triplex-binding buffer for at least 2 h.
The 30-end-labeled substrate was made by labeling

duplex DNA using deoxyadenosine 50-triphosphate,
30[a-32P]-(cordycepin 50-triphosphate) (Perkin Elmer Life
Sciences, Boston, MA, USA) and terminal transferase.
The 30-end-labeled duplex substrate was either gel purified
directly on a native polyacrylamide gel or digested with
MluI to remove the 30-end label on the pyrimidine strand
prior to gel purification. Both digested and undigested
substrates were incubated in triplex-binding buffer with
psoAG30 followed by irradiation with UVA as mentioned
above. Crosslinked substrate was isolated as described
earlier.
To create a substrate labeled on the 30-end of the

TFO, psoAG30 was labeled using deoxyadenosine
50-triphosphate, 30[a-32P]-(cordycepin 50-triphosphate)
and terminal transferase. Labeled TFO was incubated in
triplex-binding buffer with duplex DNA followed by irra-
diation with UVA, as above. Crosslinked substrate was
isolated as described earlier.
The positive control (F2650) is a 50-bp duplex with a

fluorescein-adducted thymine at base 26 in the duplex. It
has previously been shown to be an efficient substrate of
UvrABC (15,16). F2650 was prepared by labeling the
50-end of the fluorescein-adducted strand as described ear-
lier. The fluorescein-adducted strand was then purified
over a MicroSpin G-25 column and annealed to its com-
plementary strand.

UvrABC protein

Wild-type Bacillus caldotenax UvrA, B. caldotenax UvrB
and Thermatoga maritima UvrC subunits were prepared
as previously described (17). Proteins were stored at
�208C.

DNase footprinting

Substrates were incubated for 5min at 228C with 0.001U
DNase I (Roche Applied Science, Indianapolis, IN, USA)
in triplex-binding buffer in a total volume of 10 ml. The
reactions were stopped by addition of EDTA (80mM final
concentration) and Herring sperm DNA (40mg). Samples
were heated to 958C in formamide loading buffer, sub-
jected to polyacrylamide gel electrophoresis (PAGE)
on a denaturing 12% gel, and analyzed using the Storm
820 Phosphorimager (Molecular Dynamics, Sunnyvale,
CA, USA).
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TFO binding assay

Target duplex DNA was 50-end-labeled with [g-32P]ATP
and incubated with increasing concentrations of TFO
(psoAG30) at 378C for 12–16 h in triplex-binding buffer
(10mM MgCl2, 10mM Tris, pH 7.6). Samples were either
run directly on a 12% TBM (89mM Tris, 89mM Boric
acid and 10mM MgCl2) native polyacrylamide gel at 70V
or were incubated in UvrABC buffer (50mM Tris, pH 7.5,
50mM KCl, 10mM MgCl2, 5mM DTT, 1mM ATP) at
558C for 30min prior to gel loading. Samples were pro-
tected from light during the procedure to prevent crosslink
formation and were visualized by autoradiography.

UvrABC incision assay

UvrA, UvrB and UvrC proteins were preheated at 658C
for 10min in UvrABC buffer. Substrate DNA was then
incubated with varying concentrations of UvrA as indi-
cated and 100 nM UvrB in UvrABC buffer for 15min at
room temperature. UvrC was added to a final concentra-
tion of 50 nM, and the reaction mix was incubated at 558C
for 30min. Reactions were stopped by addition of EDTA
to a final concentration of 20 nM. Samples were heated to
958C in formamide loading buffer, subjected to PAGE on
a denaturing 6% gel and analyzed using the Storm 820
Phosphorimager.

UvrA and UvrB protein binding assay

Target duplex was 50-end-labeled on the pyrimidine-rich
strand. Duplex, ICL and TFO-ICL substrates were pre-
pared as described earlier. Substrate DNA was incubated
alone, with 20 nM UvrA, or with 20 nM UvrA and 100
nM UvrB in UvrABC buffer at room temperature for
15min followed by incubation for 30min at 558C.
Loading dye was added to each sample to a final concen-
tration of 8% glycerol, and samples were run on a native

4% polyacrylamide gel (89mM Tris, 89mM Boric acid,
2mM EDTA, 1mM ATP, 10mM MgCl2) at 100V (5V/
cm) at room temperature. Alternatively, in order to char-
acterize a quickly migrating band in the TFO-
ICL+UvrA+UvrB lane, samples were heated to 958C
for 5min following incubation with UvrA or
UvrA+UvrB and allowed to cool at room temperature
for 5min prior to the addition of loading buffer. Assays
were analyzed using the Storm 820 Phosphorimager.

RESULTS

Experimental design

The 120-bp duplex target was designed to contain a 30-bp
TFO binding site and a psoralen 50-AT-30 crosslinking site
(Figure 1). TFO-ICL substrate was created by incubating
the 120-bp duplex with the psoralen-modified TFO
(psoAG30) followed by irradiation with UVA at 1.8 J/
cm2 to crosslink the psoralen to the target duplex. ICL-
only substrate was constructed using a psoralen-disulfide-
linked TFO (pso-SS-AG30). Following incubation with
pso-SS-AG30 and UVA irradiation, the sample was trea-
ted with DTT to reduce the disulfide bond to release the
TFO. Crosslinked samples were then purified by denatur-
ing PAGE. The fluorescein-adducted duplex F2650, which
has previously been shown to be efficiently incised by
UvrABC nuclease (15,16), was used as a positive control.

Thetriplexstructure ispresentfollowingsubstratepurification

In order to confirm the presence of the triplex structure
following gel purification and reannealing of TFO-ICL
substrate, DNase footprinting was performed on duplex,
ICL only, TFO-ICL and unpurified TFO-ICL substrates
(Figure 2A). Digestion of the TFO-ICL substrate was
inhibited from approximately 60–90 bases (Figure 2A,
lane 6), as expected based on the presence of the bound

5′ aTCCTTCCCCCCCCACCACCCCCTCCCCCTC 3′
3′ tAGGAAGGGGGGGGTGGTGGGGGAGGGGGAG 5′

5′ pso-AGGAAGGGGGGGGTGGTGGGGGAGGGGGAG 3′
Psoralen-modified TFO ( psoAG30)

MluI
restrictionsite

TFO target site

5′
3′

3′ py
5′ pu

B

A

Figure 1. The target duplex and psoralen-modified TFO. (A) Space-filling model of a psoralen-modified TFO bound to its target duplex. The
psoralen moiety is shown in yellow and the TFO is shown in red bound to the purine-rich strand of the target duplex (blue) in the major groove. The
pyrimidine-rich strand is shown in green (21). (B) Psoralen-modified TFO and TFO binding site. The TFO binding site is shown in red, the psoralen
crosslinking site is shown in yellow and the pyrimidine-rich (py) and purine-rich (pu) strands are depicted in green and blue, respectively. The
sequence of the TFO binding site is shown in bold capital letters, the psoralen crosslinking site is underlined and psoAG30, the psoralen-conjugated
TFO, is depicted in an antiparallel orientation relative to the purine-rich strand of the target duplex. The MluI restriction site was used to remove the
30-radiolabel on the pyrimidine strand. Figure 1A reprinted with permission from Vasquez et al., Biochemistry, 35, 10712–10719, Copyright 1996
American Chemical Society.
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30-base TFO, consistent with the protected region
observed with the unpurified TFO-ICL substrate
(Figure 2A, lane 4).

Triplex formation occurs under the conditions of the
UvrABC incision assay

Since the thermophilic UvrABC nuclease functions at
558C, we wanted to assure that the triplex structure was
stable at this temperature. Target duplex DNA was end-
labeled and incubated with increasing concentrations of
TFO in triplex-binding buffer, or in UvrABC incision
assay buffer, as indicated (Figure 2B and C). Samples
were either run directly on a 12% TBM native gel or
were incubated in UvrABC buffer at 558C for 30min
prior to gel loading. Under both conditions the TFO
demonstrated a binding affinity of �10�8M for its target
duplex. To verify that the TFO was not simply reanneal-
ing to the duplex in the gel following incubation at 558C,
target duplex was mixed with increasing concentrations of
TFO in triplex-binding buffer and run immediately on the
gel without incubation. No binding was observed even at
high concentrations (data not shown), suggesting that the
TFO does not reanneal to its target duplex throughout
the course of the gel mobility shift assay. These results
suggest that the reaction conditions do not have a sub-
stantial effect on TFO binding, a finding consistent with
published reports on the thermal stability of triplex DNA
structures (18–20).

UvrABC incises TFO-directed psoralen ICLs with a higher
efficiency but similar pattern to that of psoralen ICLs alone

Substrate DNA was alternately labeled on the purine-rich
strand, pyrimidine-rich strand or the third strand TFO in
order to monitor processing by the UvrABC nuclease.
Substrate DNA was then incubated with 20 nM UvrA
and 100 nM UvrB in UvrABC buffer for 15min at room
temperature. UvrC was added to a final concentration of
50 nM, and the reaction mixture was incubated at 558C for
30min. Samples were then subjected to denaturing PAGE
to determine the amount and types of incision products
generated.
Results from experiments with the substrate 50-end-

labeled on the purine-rich strand are shown in
Figure 3A. UvrABC has been shown to incise the
purine-rich strand containing the furan adduct more effi-
ciently than the pyrimidine strand (containing the pyrone
adduct) in similar studies (6,13). Following incubation
with the UvrABC nuclease, both TFO-ICL and ICL-
only substrates produced incision products migrating
slightly slower than 80 bases (Figure 3A, lanes 2 and 6).
This is consistent with cutting of the purine strand �9
bases on the 50-side of the ICL (Figure 3B), which
would yield an 83-base product, placing the incision site
within the TFO-binding region. No incision product was

Dnase I

M D
u

p
D

u
p

D
up

+
T

F
O

D
up

+
T

F
O

T
F

O
-I

C
L

T
F

O
-I

C
L

IC
L

IC
L

1 2 3 4 5 6 7 8

− + − + − + − +

100

70

50

80

90

60

A

Triplex
Duplex

B

37°C

TFO [M] 10−6 10−7 10−8 10−9 10−100

55°C

C
TFO [M]

Triplex
Duplex

ICLs

“Duplex”

Monoadduct

10−6 10−7 10−8 10−9 10−100

Figure 2. Triplex formation occurs under conditions of the UvrABC
incision assay. (A) DNase footprint to verify presence of the triplex
structure. Substrate labeled on the 50-end of the purine-rich strand
was incubated �/+ DNase I as indicated. Lanes 1 and 2 contain
duplex, lanes 3 and 4 contain unpurified TFO-ICL substrate, lanes 5
and 6 contain gel-purified TFO-ICL and lanes 7 and 8 contain gel-
purified ICL only. A bracket indicates the protected region. (B) and
(C) TFO-binding assay. Target duplex DNA was end-labeled with
[g-32P]ATP and incubated with increasing concentrations of TFO as

indicated. Samples were either incubated in standard triplex binding
buffer at 378C and subjected to native PAGE on a 12% TBM gel
(B) or were incubated in UvrABC buffer at 558C for 30min prior to
loading (C). Triplex formation occurs under both conditions (binding
affinity of �10�8M), indicating that the reaction conditions did not
affect TFO binding.
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observed with nondamaged duplex (Figure 3A, lane 4).
The fluorescein-adducted substrate F2650 was used as a
positive control in the incision assays though may not be
shown in all figures for clarity of presentation. A repre-
sentative assay is shown in Figure 3E. Incision efficiencies
observed were similar to those reported previously on
ICL-containing substrates in the absence of a third
strand TFO (15,16). Interestingly, analysis of the incision
activity of the UvrABC nuclease on the TFO-ICL and
ICL-only substrates indicated that 50 incision of the
TFO-ICL substrate is more efficient than 50 incision of
the ICL-only substrate (Figure 3F; 44� 12.8% and
21� 5.2%, respectively, P< 0.05 using Student’s t-test;
the values obtained for incision activity on the TFO-ICL
and ICL substrates were normalized to the incision activ-
ity on the F2650 substrate). This is in contrast to published

work utilizing a pyrimidine-rich MOP-modified TFO (13).
These data suggest that the purine-rich TFO does not
inhibit the 50-incision activity of the UvrABC nuclease
under the conditions of our assay.

To gain more information on the nature of the incision
sites, the target duplex was 30-end-labeled on the purine-
rich strand of the target duplex. After incubation with the
UvrABC nuclease, samples were subjected to denaturing
PAGE and an incision product migrating between 20 and
30 bases was observed in the TFO-ICL lane (Figure 3C,
lane 1). This product size corresponds with UvrABC inci-
sion on the purine-rich strand�3 phosphodiester bonds on
the 30-side of the ICL (Figure 3D), which would generate a
26-base product, consistent with previous studies (13).

To determine whether the UvrABC nuclease incises the
pyrimidine-rich strand of the crosslinked target duplexes,
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Figure 3. UvrABC incision assay with the radiolabel on the purine-rich strand of the target duplex. (A) UvrABC incision assay with 50-end-labeled
purine-rich duplex target strand. Substrate DNA was incubated with purified UvrA (20 nM), UvrB (100 nM) and UvrC (50 nM) as described in the
Materials and Methods section and subjected to denaturing PAGE on a 6% gel. Lanes 1 and 2 contain purified psoralen crosslinked duplex substrate
treated to remove the TFO (labeled as ICL) �/+ UvrABC, lanes 3 and 4 contain nondamaged duplex DNA (labeled as Dup) �/+ UvrABC and
lanes 5 and 6 contain purified TFO-directed psoralen ICL substrate with the TFO covalently attached (labeled as TFO-ICL) �/+ UvrABC. The bar
(�) indicates lanes that have been removed for clarity of presentation. (B) Expected incision sites for the UvrABC nuclease on ICL and TFO-ICL
substrates. The expected incision product is shown in red, the TFO is depicted in blue and incision sites are marked by arrows. A green star indicates
the position of the radiolabel. The pyrimidine-rich and purine-rich strands of the target duplex are labeled py and pu, respectively. The incision
product migrating between 80 and 90 bases corresponds with cleavage on the purine-rich strand �9 phosphodiester bonds on the 50-side of the ICL,
within the triplex binding site. (C) UvrABC incision assay with the purine-rich strand of the target duplex 30-end-labeled. Lanes 1 and 2 contain
TFO-ICL +/� UvrABC. The incision product migrating between 20 and 30 bases corresponds with cleavage on the purine-rich strand �3
phosphodiester bonds on the 30-side of the ICL. (D) Expected UvrABC incision sites on the TFO-ICL substrate. The figure is marked as in (B).
(E) UvrABC incision assay with fluorescein-adducted positive control (F2650) 50-end-labeled on the fluorescein-adducted strand. Lanes 1 and 2
contain F2650 �/+ UvrABC. (F) Histogram indicating the average incision (as a percent of the total substrate) observed for ICL and TFO-ICL
substrates by the UvrABC nuclease. Incision assays were repeated at least three times. Data presented are �SD, P< 0.05 using Student’s t-test.
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the 50-end of the pyrimidine-rich strand was labeled and
subjected to the UvrABC incision assay. For both
TFO-ICL and ICL-only substrates 50-incision efficiency
on the pyrimidine-rich strand was <3% (Figure 4).
However, an incision product of �220 bases was observed
by denaturing PAGE in the sample containing the TFO-
ICL substrate and the UvrABC nuclease (Figure 4A, lane
2), likely due to purine-rich strand incision. Similarly,
incubation of the ICL-only substrate with UvrABC pro-
duced two products migrating between 140 and 150 bases
(Figure 4C, lane 4), again suggesting that these products
were the result of cutting on the purine-rich strand of the
target duplex only (Figure 4B and D). Labeling of the
30-ends likewise revealed an incision product of �220 bp
(Figure 4E, lane 2), but no detectable product of �88
bases as might be expected with cutting on the 30 side of
the ICL on the pyrimidine-rich strand (Figure 4F). These
results point to inefficient incision by UvrABC on the
pyrimidine-rich strand compared to the purine-rich
strand of the target duplex on both the TFO-ICL and
the ICL-only substrates.

Since the presence of the TFO did not appear to inhibit
the incision activity of the UvrABC nuclease on the
purine-rich strand of the crosslinked triplex substrate,
we 30-end-labeled the TFO to observe its processing by
UvrABC. A product was observed at �220 bases, the
same size as the product seen when the pyrimidine-rich
strand was labeled. However, no products of the size
expected from TFO cleavage (<22 bases) were identified
as UvrABC incision products (data not shown), indicating
that UvrABC does not incise the TFO itself prior to inci-
sion of the purine-rich strand of the target duplex. This
suggests that the intact TFO remains covalently linked
(via the ICL) to the substrate following processing by
the UvrABC nuclease and that the TFO may be displaced
from the duplex target site during processing.

UvrA and UvrB binding displaces the TFO from the
target duplex

It is known that UvrA2B binds damaged DNA, with
UvrA loading UvrB onto the site. UvrA is then released,
leaving the UvrB-DNA preincision complex (7). In order
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Figure 4. UvrABC incision assay with the radiolabel on the pyrimidine-rich strand of the target duplex. (A) Samples were incubated with 20 nM
UvrA, 100 nM UvrB and 50 nM UvrC as described in the Materials and methods section and subjected to denaturing PAGE on a 6% gel. Lanes 1
and 2 contain TFO-ICL �/+ UvrABC. The insert contains a magnified view of the incision product. The incision product migrating just above 20
bases corresponds to cutting on the pyrimidine-rich strand of the target duplex. (B) Expected incision sites for UvrABC on the TFO-ICL substrate.
The expected incision product is shown in red, the TFO is depicted in blue and incision sites are marked by arrows. A green star indicates the
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to investigate the effects of the TFO on damage recogni-
tion and binding by UvrA and UvrB, a gel mobility shift
assay was performed with radiolabeled substrates contain-
ing an ICL or a TFO-ICL in the presence of purified UvrA
and UvrB proteins. We found that binding of UvrA to the
ICL and to the TFO-ICL substrates was similar (<7%),
and that incubation of the substrates with both UvrA and
UvrB resulted in �40% binding by UvrB (Figure 5A,
lanes 9 and 12), suggesting that the increased incision
efficiency of the TFO-ICL substrate was not due to an
increase in recognition of or binding by the UvrA2B
complex. This is consistent with results reported by
Duval-Valentin et al. (13), with a pyrimidine-rich TFO.
As expected, incubation of F2650 with both UvrA and
UvrB resulted in efficient (�55%) binding by UvrB
(Figure 5A, lane 3). Interestingly, an additional product
migrating faster than UvrB-bound TFO-ICL and slightly

slower than unbound TFO-ICL was observed on the gel in
the sample containing TFO-ICL in the presence of both
UvrA and UvrB (Figure 5A, lane 12, band labeled ‘altered
substrate’). We speculated that this product may be the
result of either binding by partially degraded protein
and/or displacement of the TFO by UvrA and/or UvrB.
To test this, substrates were subjected to either proteinase
K treatment or heat denaturation following incubation
with either UvrA or UvrA and UvrB. The product was
sensitive to heat denaturation (Figure 5B) but not to pro-
teinase K (data not shown), consistent with structural
modifications of the TFO-ICL (such as altered hydrogen
bonding of the TFO induced by UvrA and/or UvrB).
To substantiate that formation of the UvrB preincision
complex was displacing the TFO, a binding reaction was
performed with nonirradiated TFO+duplex samples, to
form a noncovalent triplex substrate. We found that the
TFO was displaced from its binding site on the duplex
DNA substrate slightly by UvrA, but dramatically in the
presence of UvrA and UvrB (Figure 5C). Taken together,
it is likely that the additional product observed is due to
displacement of the TFO from its target duplex binding
site during formation of the UvrB–DNA complex.

UvrA concentration affects the incision efficiencies
of TFO-ICL and ICL substrates differently

It has been reported that the cleavage efficiencies of both
ICLs and TFO-ICLs depend on the concentration of
UvrA, with the presence of a pyrimidine-rich third
strand inhibiting cleavage at low UvrA concentrations
(<70 nM) (13). To investigate the effects of UvrA concen-
tration on the cleavage efficiencies of the purine-rich TFO-
ICL substrate compared to the ICL alone, UvrABC inci-
sion assays were performed with concentrations of UvrA
ranging from 0nM to 70 nM on substrates labeled on the
50-end of the purine-rich strand (Figure 6A and B). As
observed previously (13), the incision efficiency of the
ICL only increased with UvrA concentration to reach a
plateau between �20 nM and 40 nM. At higher concentra-
tions, the level of incision began to decrease. The incision
efficiency of the TFO-ICL substrate was similar to the
incision efficiency of the ICL-only substrate at lower con-
centrations of UvrA (<20 nM). However, with UvrA con-
centrations of 20 nM and higher, the incision efficiency of
the TFO-ICL was substantially higher than the incision
efficiency of the ICL only (Figure 6C).

DISCUSSION

Psoralens are photoreactive compounds that can form
ICLs preferentially at 50-TA-30 sites in double-stranded
DNA. Psoralen-modified TFOs can be used to target
psoralen molecules to specific sites in double-stranded
DNA (21,22), providing a tool for targeting genes and
directing site-specific DNA damage. However, despite
the potential utility of psoralen-modified TFOs in the bio-
medical and biotechnological fields, much remains to be
learned about the processing of these lesions by DNA
repair proteins. Here, we investigated the effect of a
purine-rich TFO on the processing of psoralen ICLs by
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Figure 5. UvrA or UvrA+UvrB protein binding assay. UvrA or
UvrA+UvrB protein binding assays with 50-end-labeled pyrimidine-
rich duplex target strand. (A) Substrate DNA was incubated with pur-
ified UvrA (20 nM) or UvrA (20 nM) and UvrB (100 nM) as described
in the Materials and Methods section and subjected to 4% native
PAGE gel. Lanes 1–3 contain F2650 positive control with no protein,
UvrA or UvrA+UvrB, respectively. Lanes 4–6 contain nondamaged
duplex DNA with no protein, UvrA or UvrA+UvrB, respectively.
Lanes 7–9 contain purified ICL only with no protein, UvrA or
UvrA+UvrB, respectively. Lanes 10–12 contain purified TFO-ICL
substrate with no protein, UvrA or UvrA+UvrB, respectively. UvrB
binding was similar with ICL and TFO-ICL substrates (�40%, lanes 9
and 12). An ‘altered substrate’ was observed when the TFO-ICL sub-
strate was incubated with UvrA+UvrB (lane 12). Asterisks mark an
artifact occurring in lanes containing crosslinked substrate. (B) UvrA
or UvrA+UvrB protein-binding assay to test for possible structural
modifications of TFO-ICL resulting in an ‘altered substrate’ following
incubation with UvrA or UvrA+UvrB. Substrate in the presence or
absence of UvrA and/or UvrB was either loaded directly on the gel
following incubation at 558C or heated to 958C prior to loading. The
‘altered substrate’ disappeared with heat denaturation, consistent with
structural modifications of the TFO-ICL. (C) UvrA or UvrA+UvrB
protein-binding assay to test for displacement of noncrosslinked TFO.
Noncrosslinked triplex substrate (pso-TFO+duplex in the absence of
UVA irradiation) was incubated with UvrA or UvrA+UvrB as
described and subjected to native PAGE (4% gel). Triplex substrate
was denatured to duplex form after incubation with UvrA+UvrB,
indicating displacement of the TFO from its target duplex binding site.
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the UvrABC nuclease. We used substrates containing
either a psoralen ICL alone or a TFO-directed ICL in
the presence of the purified UvrABC protein complex to
compare processing of psoralen ICLs in the presence or
absence of the third strand TFO. Our results show nearly
identical incision patterns of the ICL with or without the
TFO, in concordance with a previous study of TFO-ICLs
by Duval-Valentin et al. (13). However, while this pre-
vious study demonstrated that a pyrimidine-rich TFO
inhibited incision by the UvrABC nuclease, we observed
efficient incision of a purine-rich TFO-ICL compared to
the ICL alone, likely due to the displacement of the TFO
by the UvrB–DNA complex.

In our study, the UvrABC nuclease generated incision
products consistent with cleavage on the purine-rich
strand of the target duplex approximately nine phospho-
diester bonds 50, and three phosphodiester bonds 30 to the
ICL in the presence or absence of the TFO. Pyrimidine
strand cleavage by the UvrABC nuclease was nearly unde-
tectable (<3%) with either substrate. This is in agreement
with previous work showing that UvrABC cuts predomi-
nantly on the furan-adducted side of an HMT ICL (6),
and that furan-sided adducts are produced on the purine-
rich strand of the target duplex when HMT is coupled to a
purine-rich TFO (12). Of note, the incision made on the
50-side of the ICL is within the TFO binding site, suggest-
ing that the UvrABC nuclease would either have to incise
the TFO first, or displace it prior to cleavage of the purine-
rich strand of the underlying target duplex. The incision
assays using a TFO-ICL substrate 30-end-labeled on the
TFO showed no evidence of incision of the TFO (data not
shown), suggesting that the TFO may be displaced from

the duplex during processing by the UvrABC nuclease.
The UvrABC complex has been shown to release short
oligonucleotides annealed to single-stranded DNA, and
the length and amount of oligonucleotide released
increased in the presence of bulky DNA adducts (23,24).
It is hypothesized that the release of the oligonucleotide is
due to strand destabilization activity of the UvrABC
nuclease. A similar destabilization of the TFO could
allow access to the target incision site on the purine-rich
strand of the duplex. Consistent with this, our gel mobility
shift assay revealed an additional product migrating faster
than UvrB-bound TFO-ICL and slightly slower than
unbound TFO-ICL in the TFO-ICL+UvrA+UvrB
lane (Figure 5A, lane 12, band labeled ‘altered substate’).
The product was sensitive to heat denaturation, suggesting
that it resulted from structural modifications of the TFO-
ICL (such as altered hydrogen bonding of the TFO).
Repetition of the gel mobility shift assay with noncros-
slinked TFO+duplex samples (i.e. the TFO was not
covalently linked to the substrate) indicated that the
TFO was displaced from the duplex DNA substrate by
the UvrA2B complex. Taken together, it is likely that
the additional product observed is due to displacement
of the TFO during the formation of the stable UvrB–
DNA complex. Crystal structure studies indicate that for-
mation of the UvrB–DNA complex is marked by insertion
of the b-hairpin motif of UvrB between the strands
of duplex DNA (25,26). Insertion of the b-hairpin into
the DNA may disrupt TFO binding, thereby displacing
the TFO and allowing access to the incision site on the
target duplex.
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Figure 6. UvrA concentration-dependent incision efficiency of ICL and TFO-ICL substrates. ICL only (A) and TFO-ICL (B) substrates were labeled
on the 50-end of the purine-rich strand. Substrates were incubated with increasing concentrations of UvrA (0–70 nM as indicated for each lane), 100
nM UvrB and 50 nM UvrC for 30min at 558C. (C) Trend lines for ICL and TFO-ICL incision efficiencies with increasing concentrations of UvrA.
Relative incision values were determined by calculating the amount of product as a percent of total sample and normalizing to the incision efficiency
of ICL-only substrate at 20 nM UvrA.
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At concentrations of UvrA �20 nM, the UvrABC
nuclease showed more efficient incision activity on the
TFO-ICL than the ICL alone. The increase in incision
observed with the purine-rich TFO-ICL substrate over
that of the ICL alone could be due to better recognition
and binding of the UvrA2B protein complex to the purine-
rich TFO-ICL compared to the ICL only. Some studies
have indicated that the binding affinity of UvrA2B is
higher for bulkier substrates, and UvrA2B binding corre-
lates with incision activity (27,28). However, we found
that binding to both TFO-ICL and ICL substrates by
UvrA and UvrB was similar, demonstrating that the
increased incision efficiency of the TFO-ICL substrate
was not likely due to an increase in recognition of or
binding by the UvrA2B complex. This is consistent with
results reported by Duval-Valentin et al. (13) with a pyr-
imidine-rich TFO and with other reports that binding of
UvrA2B complex does not always correlate with incision
efficiency (29,30). Since the increased incision efficiency
observed in the presence of the triplex does not appear
to be the result of increased binding by UvrA2B, it may
be that binding and incision by UvrC is facilitated by the
presence of the third strand.
The efficient incision of TFO-directed ICLs observed

here contrasts with previous work indicating that the pres-
ence of a pyrimidine-rich TFO inhibits incision of a psora-
len ICL by UvrABC (13). A possible explanation for
the discrepancy observed in the two studies could be the
nature of the psoralens and TFOs used. While the authors
of the previous study used a MOP-modified pyrimidine-
rich TFO, we used an HMT-modified purine-rich TFO.
Purine-rich TFOs bind in the major groove of the target
duplex DNA at physiological pH in an antiparallel orien-
tation to the purine-rich duplex strand, while pyrimidine-
rich TFOs require acidic conditions for triplex formation
and bind in the same 50–30 orientation as the purine-rich
duplex strand (31). Additionally, Duval-Valentin et al.
(13) reported that the furan side of the psoralen derivative
formed adducts primarily with the pyrimidine-rich strand
of its target duplex. With the substrate used in this study,
the furan side of the psoralen derivative forms adducts
primarily on the purine-rich strand of its target duplex.
It has been reported that sequence context, psoralen orien-
tation and adduct stereochemistry can affect UvrABC
incision patterns and efficiencies (29,30,32). Since our
results with a 30-end-labeled TFO suggest that the TFO
is being displaced rather than incised, it is possible that the
chemical and physical differences in the TFO-ICL struc-
tures under study may affect the ability of UvrABC to
displace the TFO after damage recognition. Consistent
with this, we demonstrated that higher concentrations of
UvrA resulted in increased incision efficiencies of the
purine-rich TFO-ICLs compared to the ICLs alone, per-
haps due to increased displacement of the TFO.
Another explanation for the discrepancy in the incision

efficiencies between the studies could be the result of high
temperature effects due to the use of thermophilic
UvrABC nuclease in this study. Assays in the current
study were performed at 558C, and the elevated tempera-
ture might have affected TFO binding. However, previous
thermodynamic studies have shown that triplexes formed

with purine-rich TFOs are stable at elevated temperatures
(�658C), and TFO binding can even stabilize the target
duplex at high temperatures (18–20). Consistent with this,
the gel mobility shift assay suggested that the reaction
conditions do not affect the binding affinity of the
purine-rich TFO used in this study.

In conclusion, psoralens are currently used in medicine
and research for their ability to form ICLs. TFOs are one
way to target such ICLs to specific sites in the genome,
providing a means to study ICL repair in vivo. However, if
psoralen-modified TFOs are to be used for research and
medical purposes, it is important to understand how the
presence of the TFO will influence the processing of psora-
len ICLs in both bacterial and mammalian systems.
Previously, we have shown that TFO-directed ICL lesions
are bound by the human NER damage/distortion recogni-
tion proteins (XPA-RPA and XPC-RAD23B) with high
affinity and specificity (14,33,34), and is it known that
NER is required for TFO-induced mutagenesis (35).
Similarly, NER is required for excision of polyamine
adducts in both Escherichia coli and human cell-free
extracts (36); and NER, in conjunction with proteolytic
degradation, has been implicated in the repair of DNA–
protein crosslinks in bacterial and mammalian systems
(37–39). In this study, we demonstrate that the purine-
rich TFO enhances incision of the ICL by the UvrABC
complex. Further, we show that the presence of the
purine-rich TFO does not alter the incision pattern of
the ICL and that the TFO is displaced in the presence of
UvrA and UvrB. Together, these results indicate that
TFO-directed psoralen ICLs are recognized and processed
by the NER mechanism in both bacterial and mammalian
systems, supporting the use of triplex technology as a
powerful tool to induced site-specific DNA damage to
facilitate genome modification.
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